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Lateral diffusive migration of massive particles in high-velocity vertical pipe flow
of moderately dense gas-solid suspensions

Piroz Zamankhan* and Hooman Vahedi Tafreshi
Department of Energy Technology, Lappeenranta University of Technology, Lappeenranta, Finland

John C. Chen
Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 18 February 1997!

Transport processes involved in a gas-particle flow, comprised of spherical particles with a narrow size
distribution suspended in a turbulent gas, are investigated theoretically on the basis of the recently developed
Enskog theory for multicomponent dense mixtures of slightly smooth inelastic spherical particles@P. Zaman-
khan, Phys. Rev. E52, 4877~1995!#. The generalized Boltzmann equation of the previous work is modified to
incorporate the relevant forces exerted upon individual particles including the drag force by the relative gas
motion. Extending the method of moments of Grad@Commun. Pure Appl. Math.2, 331 ~1949!#, the modified
Boltzmann equation is solved to obtain the nonequilibrium velocity distribution function for particles of each
size. By taking the monodisperse limit, a basic equation is derived for the treatment of the problem of lateral
diffusive migration of solids in an assembly composed of separate equisized spherical particles traveling in a
fully developed, turbulent upward flow of a gas within a vertical pipe. At moderately high solid concentrations,
where the random component of the particle velocity is generated mainly by particle-particle collisions, the
particle diffusivity and the thermal diffusion coefficient are found to increase with the square root of the
granular temperature, a term that measures the energy of the random motion of the particles.
@S1063-651X~97!07309-1#

PACS number~s!: 47.55.Kf, 47.60.1i
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I. INTRODUCTION

During the past few years, the hydrodynamics of confin
gaseous suspensions has received considerable attentio
to its importance in several applications, including fluid ca
lytic cracking@1# and combustion of low-grade coal in pow
generation plants@2#. In observing the transport of mode
ately dense gas solid particles in vertical pipes, where
solid volume fraction is much larger than 0.001, it has be
noted@3# that solid particles were distributed nonuniform
over the cross section and that the recirculation of partic
occurred against the direction of their net flow. These p
nomena clearly influence the particle residence time distr
tion in the risers, which is important in predicting the beha
ior of systems in which the particles catalyze reactio
between species in the gas or in which they react with
gas.

Several approaches towards developing two-fluid mod
in which the gas and the particle phases are treated
mixture of continua, have been used in an effort to pred
the aforementioned observations. The results of the ear
approach, used by Berker and Tulig@4#, demonstrated tha
for the pipe flow regimes relevant to high-velocity gas flu
ized beds~6–9 m/s!, the particle-eddy interactions tend
move particles laterally due to the presence of a turbule
gradient. As a result of this motion, an uneven distribution
particles over the cross section may appear. The esse
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väskylä, Finland.
561063-651X/97/56~3!/2972~9!/$10.00
d
due
-

e
n

s
-
-

-
s
e

s,
a

t
st

ce
f
tial

approximation in their approach is that the particle collisi
time tc , which characterizes the mean time between succ
sive collisions of a particle, is much larger than the parti
viscous relaxation timetd , which describes the response of
particle to the drag force created by turbulent fluctuating
locity of the surrounding gas.

Under the operating conditions used for gas fluidiz
beds, there are many parameters that affect the motio
suspended solid particles relative to a turbulent carrier flu
including particle inertia and solids loading. For moderate
concentrated particle loadings, recent tests@5# indicated that
in high-gas-velocity flows, large-scale solid structures~clus-
ters! @3,6#, which may be observed at lower velocities wi
the same rate of transport of solid, give way to a populat
composed of separate particles whose free and indepen
motions resemble that of gas molecules in a dense ga
thermal equilibrium. Thus, for this case there is some ju
fication for assuming that the particle collision timetc is
much smaller than the particle viscous relaxation timetd .
Under such circumstances the flow regime is not fluid do
nated; instead, the frequency of a single-particle displa
ments is controlled by the rate of collision with the neig
boring solid particles@7#. Hence the study of the latera
diffusive migration of solids in a turbulent upward flow of
gas within a vertical pipe at moderately high solid conce
trations, which seems to be a possible cause for the tend
of particles to concentrate in the wall region, requires
essentially different approach from those proposed
particle-laden turbulent flows@8#.

Developing theories based on the kinetic theory of de
gases@9# to obtain continuum equations for the mass, m
mentum, and energy of the solid phase, therefore, co
-
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present an important step toward a better understandin
the fundamentals involved in gas-particle flows in vertic
risers. The idea is that the particle phase in vertical pipe fl
of gas-solid suspensions is treated as a granular mate
where momentum is primarily transferred during instan
neous particle-particle collisions. The difficulty with appl
ing kinetic theory analysis to particle phase of suspens
flows is that the theory depends on assumptions that are
propriate for gas molecules. Unlike the kinetic energy of g
molecules, the solid-particle kinetic energy is not necessa
conserved in collisions due to the inelasticity of the particl
Hence the formulations in the kinetic theory obtained assu
ing the reversibility of collisions should be modified to a
count for the energy dissipated in solid-body collisions.

Recently, such a modified kinetic theory@10# has been
used by Sinclair and Jackson@7# in describing the fully de-
veloped flow of gas and monosized particles in a verti
pipe. More recently, Louge, Mastorakos, and Jenkins@11#
have developed an improved model by considering the ef
of gas turbulence, making the approximation that the p
ticles react sluggishly to turbulent velocity fluctuations of t
surrounding gas and therefore velocity fluctuations at
level of individual particles are induced by interparticle co
lisions. After the study described in this paper was und
way, Dasgupta, Jackson, and Sunderasan@12# developed a
different approach to studying the role of the fluctuatio
associated with the organized motion of collections of p
ticles on the occurrence of segregation in turbulent g
particle flows in vertical risers. Considering the dispers
flux of small particles, Dasgupta, Jackson, and Sundera
applied a semiempirical scheme@13#, which has been widely
used to model the radial dispersion velocity for a gas susp
sion of small solid particles when the particle-fluid intera
tion is the dominating mechanism that controls particle d
fusivity. The idea was that the response of individu
particles to the fluid velocity fluctuations leads to the occ
rence of a time-averaged diffusive flux of solids in the dire
tion of decreasing turbulence intensity. More general stud
of the particle dispersion flux, when the frequency of t
particles’ displacement is controlled by their rate of co
sions with the neighboring solid particles, appear to be la
ing, however.

As suggested by Batchelor@14#, a detailed theoretica
study on transport properties such as the particle diffus
coefficient, which characterizes a tendency of particles
migrate from high- to low-solid-concentration regions, a
lows for the development of more accurate criteria to ass
the instability of gas-particle flows. Recently, Koch@15#
stated that the relative diffusion of particles and fluid and
associated forces in a monodisperse gas-solid suspen
play a similar role to the effective pressure@12# in the par-
ticle phase. However, the distinctions have not been explo
between drift of grains from regions of high to low shear
a confined flow, which generates concentration inhomoge
ities that induce ordinary diffusion, and those due to the pr
ence of gradients of granular temperature, which results in
extra diffusive flux along these gradients. Hence more g
eral studies on the particle diffusivity and the particle th
mal diffusion coefficient in moderately dense gas-solid s
pensions based on rigorous kinetic theory of granular flu
are needed both to test existing approximation methods
of
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to pave the way towards new approaches.
In light of the above concerns, the current study has t

objectives.
First, an approximate theory is constructed for describ

the motion of particles in a flow comprised of spherical p
ticles with a narrow size distribution, suspended in a mod
ately dense suspension of multisized massive particles
turbulent carrier gas. The theory is based on a general
Boltzmann equation using the recently developed kine
theory of the dense mixtures of solid particles with distrib
tion in particle size@16#, which is modified to include the
resistant forces@17# with those due to pressure gradient a
external field in addition. By definition, particles are cons
ered ‘‘massive’’ if their hydrodynamic relaxation timestd
are much larger than the particle-eddy crossing timet i @18#,
which is assumed to be smaller than the Lagrangian t
macroscale of the turbulencet l . Extending the method o
moments of Grad@19#, the generalized Boltzmann equatio
is solved to obtain the nonequilibrium velocity distributio
function for particles of each size. It is assumed that the fl
mechanics of particles in a multicomponent gas suspen
flow can be adequately described by consideration of
13-moment approximation. In conjunction with this effo
analytical relations are developed for the lateral particle d
fusion coefficients and thermal diffusion ratios when the ra
dom component of the particle velocity is generated mai
by solid-body collisions between the particles. For this ca
the particle diffusivity and the thermal diffusion coefficie
are found to increase with the square root of the granu
temperature. The granular temperature is a quantity that m
sures the energy of the random motion of the particles.

Second, the theoretical particle diffusivity and therm
diffusion coefficient are tentatively used to evaluate the
eral particle diffusion velocity in fully developed, turbulen
vertical pipe flows of moderately dense gas-solid susp
sions of the uniform-size spherical particles. The results
the present theory for particle diffusivities as a function
particle size are compared with the values of long-time d
fusion coefficients obtained for collisionless conditions@20#.
Moreover, the segregation effect arising from the parti
thermal diffusion, which results from a coupling betwe
dissipative mass and heat flows, is discussed.

II. ANALYSIS

Massive particles respond sluggishly to gas veloc
variations and their trajectories are relatively straight in sp
of the gas turbulence@20#, in situations where the solid
concentration tends towards zero. Consider a massive
ticle perturbed from the state of local equilibrium slip co
dition ~which would hold if the particle was subjected on
to viscous interaction with the gas! by a collision with its
neighboring particle. To return to the local state of slip, t
particle is acted on by the resistant force tending to acce
ate~particle velocity after the collision less than the local g
speed! or decelerate~particle velocity after the collision
greater than the local gas speed! it toward the local gas ve-
locity. In the limit tc!td where the particle mean free pa
is not large compared to its diameter, the random fluctuati
that result from one collision have not significantly decay
before the next collision takes place. For this case, as
motions of molecules of a dense gas in a state of molec
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chaos, where colliding molecules are distributed at rand
without correlation between velocity, two arbitrary particl
will move in such a way that statistically the distance b
tween them increases with time. In the presence of a par
concentration gradient, this gives rise to an observable ef
@21#, which is a gradual spread or ‘‘diffusive motion’’ of th
particles traveling in the gas. For the situation to be cons
ered here, where the particle Stokes@15# number is large, the
rapidness of the particle movement depends on the ang
the particle direction after a collision relative to the line
action of the gravitational force. It is the highest if the pa
ticle after a collision is directed parallel to the direction
the gravitational field due to the complete conversion of p
ticle potential energy into particle motion. Since the parti
path is random, in an average sense, the gravitational f
may not affect the particle collision time.

The problem addressed here is the derivation of a b
equation to describe the diffusive motion of massive sph
cal particles, particularly in the lateral direction, in a ful
developed, turbulent, moderately dense gas-particle fl
within a vertical pipe, where the particle displacements f
quency is controlled by its rate of collision with the neig
boring solid particles. Due to the random character
particle-particle collisions, the statistical-mechanics a
proach makes an important contribution to the understand
of the diffusional processes involved in this system. In
following statistical descriptions, only broad features of t
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ew
e

na

o
or

r-

a

r
-

m

-
le
ct

-

of

-

r-

ce

ic
i-

w
-

f
-
g

e

particulate motion are made use of and a connection
sought with the particle diffusivity and the thermal diffusio
coefficient. In the first place, this is hoped to assist in
interpretation of experimental results and to point the w
towards new approximate theories.

Consider a moderately dense suspension of massive
particles consisting of a mixture ofs different-size particles
in a vertical upflow of a turbulent gas. The particles a
assumed to be hard, smooth, but nearly elastic. They
sufficiently large that the effects of Brownian motion, virtu
mass, and Basset history forces can be neglected. Addi
ally, the effects of the rotational motion of the particles a
electrostatic interparticle forces are not accounted for.

The expected number density of then particles in the
s-component mixture havingmn mass andsn diameter in a
fixed volume elementdxn centered at a pointxn having ve-
locities in the rangecn , cn1dcn , wheredcn is a velocity
element, at timet is represented by

f n5 f n~xn ,cn ,t !. ~1!

The evolution of the number density of then particles
may be described by the generalized Boltzmann equatio
the previous work@16#, which has been modified to incorpo
rate the forces upon the particles resulting from the rela
gas motion with those due to pressure gradient in addit
Then one may write
df n~xn ,Cn ,t !

dt
5F2Cn•

] f n~xn ,Cn ,t !

]x
1

]u

]x
:S Cn

] f n~xn ,Cn ,t !

]C D1
du

dt
•

] f n~xn ,Cn ,t !

]C
2

]

]C
•^ f n~xn ,Cn ,t !Fn&G

1(
j 51

s E E sn j
2 @gn j~xn ,xn1sn jku$nn%! f n~xn ,Cn ,t ! f j~xn1sn jk,Cj8 ,t !2gn j~xn ,xn

2sn jku$nn%! f n~xn ,Cn ,t ! f j~xn2sn jk,Cj ,t !#~cn j•k!H@cn j•k#dk dcj . ~2!
vi-
a

ar-
e

the
of

-

-

Since the particle diffusion processes involved in a g
particle flow are of interest in the present study, the n
variable Cn5cn2u, which is the random velocities of th
n particles with reference to the mass mean velocityu of the
solid mixture, is now regarded as independent ofxn rather
thancn . The generalized Boltzmann equation for then par-
ticles is coupled with that of carrier gas through the exter
force per unit massFn of the drift term, which is the first
term on the left-hand side of Eq.~2!, which represents the
rate of change of the distribution function due to motion
particles without collisions, and with those of the neighb
ing solid particles having different massesmj and diameters
s j ( j 51,2,...,s) through the collision terms, which are inco
porated in the second term on the right-hand side of Eq.~2!,
which represents the effect of collisions between the p
ticles. Hered/dt is the substantial time derivative,cn j is the
relative velocity of two particles with velocitiescn and cj ,
$nn% is the component densities,k is the apse vector fo
collisions,gn j is the radial distribution function of two par
ticles, one of componentn and the other of componentj , at
-

l

f
-

r-

contact when the distance of their centers issn j5(sn
1s j )/2, sn j represents the collision diameter, and the Hea
side functionH@cn j•k# selects those particles that have had
collision and are leaving the collision cylinder@22#.

To gain an understanding of the inelasticity effects of p
ticles, which leads to energy flows unidirectionally from th
translational degrees of freedom into internal modes of
particles during particle-particle collisions, the velocities
the restituting collisioncn8 andcj8 , which are related to those
of the direct collisioncn andcj , are defined using the con
cept of the coefficient of restitutione:

cn85cn2M jn~11en j!~cn j•k!k,
~3!

cj85cj1Mn j~11ejn!~cn j•k!k,

whereM jn5mj /(mj1mn) anden j is the coefficient of res-
titution for a collision between then j pair of particles. Al-
though the coefficient of restitutionen j depends on the par
ticle impact velocity, the concept ofe as a velocity-
independent material constant is still widely used@23#. Here
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the coefficients of restitution for the particles are assume
be constant and to have values near unity.

In the present attempt to generalize the Boltzmann eq
tion to higher densities, the collision integral is expressed
the form used in the revised Enskog theory of Van Beije
and Ernst@24#. Thestosszahlansatzis modified by introduc-
ing a factorgn j to account for the correlation between th
positions of two colliding particles and the resulting increa
in the frequency of binary collisions. The factorgn j , which
is an important factor in determining the thermodynam
properties of the particle assembly, is chosen to be the n
uniform pair distribution function, which takes into accou
the spatial nonuniformities in the local equilibrium sta
Consider an assembly of particles in a flowing gas-part
suspension with a set of statesa, each of which has an en
ergyHa , which is the total energy of the assembly in th
state. If the assembly is at a granular temperatureT.0, its
statea will vary with time and quantities such asHa that
depend on the state will fluctuate. After a change of para
eters, the fluctuations will have on average a definite dir
tion, say, the direction of decreasing energyHa . After a
while any such trend vanishes and the assembly just flu
ates around a condition that is called thermal equilibrium
the effect of the interstitial gas is negligible, the equilibriu
state of the particle assembly is a static configuration wit
zero granular temperature, due to the dissipation of part
fluctuating energy via inelastic collisions. However, in ga
particle flows in vertical risers energy will be supplied to t
particles by the suspending gas. Thus, in this instance t
is some justification assuming that the particle assembly
haves like the dense gas molecules in nonuniform equ
rium and therefore using the pair distribution function d
fined by

gn j~xn ,xn6sn jku$nn%!5gn j
c ~sn ju$nn%!

1(
l 51

s E dxlHn jl~xn ,xn

6sn jk,xl u$nn%)~xl2xn!•
]nl

]x
1O~¹2!, ~4!

wheregn j
c is the equilibrium value of the radial distributio

function for n j pair of particles at contact

gn j
c ~sn ju$nn%!511(

l 51

s

nl~xn!E Vn jl~xn ,xn6sn jkuxl !dxl

1••• . ~5!

Here

Hn jl~xn ,xn6sn jk,xl u$nn%!5Vn jl~xn ,xn6sn jkuxl !

1 (
l 851

s

nl 8~xn!E Vn jll 8~xn ,xn

6sn jkuxlxl 8!dxl 81••• ,

Vn jl(xn,xn6sn jkuxl) and Vn jll 8(xn,xn6sn jkuxlxl 8) repre-
sent Husimi functions@25#. There is, however, very little
justification for assuming the isotropic equilibrium value
to
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the radial distribution function~5! for the particle assembly
in a gas-particle flow in vertical risers, where, for instanc
the particle diffusion coefficients associated with the strea
wise direction are somewhat larger than those associ
with the lateral directions. While the significance of an elli
soidal distribution function, whose principal axes is paral
to the streamwise direction, for a nonequilibrium particle a
sembly in gas-particle flows in vertical risers cannot be
glected, it is not obvious how to treat this problem rigo
ously. An attempt to model the linear anisotropy of the p
distribution function in phase space at the point of collisi
using a functional of local solid volume fraction was su
gested by Mello, Diamond, and Levine@26#, but the pro-
posed expression for the pair distribution function was in f
a crude approximation.

The solution of Eq.~2!, based on a generalized Grad m
ment method@19#, may be approximated by

f n~xn ,Cn ,t !5nnF mn

2pTG3/2

expF2
mnCn•Cn

2T GF11
mnvn•Cn

T

1
3

2 S 2
un

T
1

mn

3T2 unCn•CnD
1

1

2 S mn

T D 2

An :CnCn1
1

10 S mn

T D 2

3S mn

T
Cn•Cn25Dan•CnG , ~6!

where An and an represent the pressure deviator tens
which is a second rank tensor, and the transport pseudo
mal energy flux vector of then particles, respectively. Here
vn represents the diffusion velocities of then particles rela-
tive to the local mass mean velocity of the solid mixtur
Thus the mean velocity of then particles in a space-fixed
coordinate system can be written asun5vn1u. It is further
assumed that the particle relaxation time is much greater
the particle-eddy crossing time, ensuring the particl
turbulence interaction may be limited to the influence of t
gas on the mean velocity of the solid mixtureu. The par-
ticles, which are moving randomly due to solid-body col
sions, transfer energy from the mean flow of the suspens
to the particle fluctuating energy that is dissipated mainly
inelastic collisions or in the long run by viscous forces. No
that the granular temperature of the mixtureT
51/n( j 51

s njTj differs from Tj ( j 51,2,...,s), which is the
granular temperature of thej particles, by a quantityu j .
Here n5( j 51

s nj represents the solid mixture number de
sity.

In the spirit of linearization, quantities such asvj , A j ,
and aj for the s components (j 51,2,...,s), which describe
deviations from equilibrium, are all regarded as small. Mo
over, by considering the recent tests by Ippolitoet al. @27#,
the present theory may be valid in the limit in which th
particulate phase is comprised of spherical particles wit
narrow-size distribution where all thes-particle granular
temperature perturbationsu j ( j 51,2,...,s) can be considered
small.

At a hydrodynamic stage, in which scales of length a
time are considerably larger than those characteristic of
particulate level, an approximate equation can be constru
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for the lateral diffusive motion of then particles in a flow of
moderately dense gas-solid suspension of multi-sized
ticles in a vertical riser using scaling arguments. To this e
the approximate solution~6! is substituted into the genera
ized Boltzmann equation~2!. After both sides have bee
multiplied by the quantityCn the mass weighted averag
@16# is taken to derive a balance of momentum. Then a te
by-term order of magnitude analysis of the balance of m
mentum is carried out to find the dominant terms. In orde
cast the lateral component of momentum balance in dim
sionless form, dimensionless ratios for the lateral diffus
velocity vnr , the lateral pseudothermal energy fluxanr , and
the particle granular temperature perturbationun of the
n-particles are made by dividing them byT0

1/2, T0
3/2, and

T0 , respectively. HereT0
1/2 represents the characteristic val

of the solid mixture fluctuating velocity. The dimensionles
vnr* 5vnr /T0

1/2, un* 5un /T0 , and anr* 5anr /T0
3/2 are all as-

sumed to be small and of the same order of magnitude. T
more dimensionless group can be defined that are usefu
the scaling in this problem. They are as follows.

~i! tn
(1)5tnd /tni represents the ratio of then-particle re-

laxation time to the relevant fluid time scale, which is t
n-particle eddy crossing time due to gravity defined bytni

5 l e /DWn
T . Here l e represents the eddies characteristic s

and DWn
T is the free fall velocity of a singlen particle. A

large value oftn
(1) means that then particles react sluggishly

to the gas velocity variations.
~ii ! tn j

(2)5tn j
c /tni represents the ratio of the mean tim

between successive collisions of ann particle with particles
of speciesj ( j 51,2,...,s) to then-particle eddy crossing time
d
,

r

r-
d

-
-
o
n-
n

ratios

ee
for

e

due to gravity. For small values oftn j
(2) then particles, cross-

ing through an eddy, will encounter several collisions w
the j particles. The consequence is that the frequency of
particle displacements are controlled by its rate of collis
with the neighboring solid particles.

~iii ! hn5@T0
1/2/Tcl

1/2#@Tcl
1/2/Vg

21/2
#@Vg

21/2
/DWn

T# represents
the ratio of the characteristic value of the solid mixture flu
tuating velocity to the free fall velocity of a singlen particle.
HereTcl

1/2 is the collisionless particle fluctuating velocity an

Vg
21/2

is the rms fluctuating gas velocity. The second bra

eted term@Tcl
1/2/Vs

21/2
# decreases@18# with increasingtn

(1) .

For a large particle the third term@Vg
21/2

/DWn
T# is small, in-

dicating that large particles, in crossing a gas, experien
the gas turbulence whose direction is rapidly changing.

The dimensionless lengths, velocities, pressure, time,
ameter, and granular temperature of then particles are de-
fined by xr* 5xr / l e , xz* 5xz / l e , ur* 5ur /T0

1/2, uz*
5uz /T0

1/2, P* 5P/r0T0 , t* 5t/t j , sn* 5sn / l e , and Tn*
5Tn /mnT0 , respectively. Herer0 represents the averag
material density of the solid mixture. Thus the momentu
balance for then particles in the lateral direction for a fully
developed, axisymmetric gas-solid flow of multisized sphe
cal particles, with the approximate expression@28# for the
external force per unit mass of then particles

Fn52g2
1

rn
m

]Pg

]x
1

rg

rn
m @b1K1~fs!1b2K2~fs!uUn

Ru#Un
R

can be cast in the form
hnFur*
]vnr*

]xr*
1vnr*

]ur*

]xr*
2

1

rn

vnr*

xr*

]~rnxr* vnr* !

]xr*
G5(

j 51

s
~11en j!

ptn j
~2! H p

3
sn j* F ~M jn2Mn j!

]Tn*

]xr*
2S nn

nj
DTn*

]

]xr*
S nj

nn
D G

2
4

3
~2pM jnTn* !1/2~vnr* 2v j r* !1

2

15 S 2p
M jn
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r jS Ur
Rn*
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~1! 2

Ur
R j*

t j
~1! D , ~7!
e

ting
ich

radi-
wheref j represents the volume fraction of thej particles in
the s-component solid mixture (j 51,2,...,s), Ps*
5Ps /r0T0 , and Pg* 5Pg /r0T0 are the dimensionless soli
and gas pressures, respectively,dn j is the Kronecker delta
r j5mjnj is the density of the j particles (j
51,2,...,n,...,s), r is the mixture density,rn

m is the material
density of then particles,rg is the gas density, the overba
indicates the mass-weighted averaged values, andUn

R is the
relative velocity between the gas and then particles whose
norm is denoted byuUn

Ru. The explicit representation for th
coefficients b1 , b2 , K1(fs), and K2(fs) in the above-
mentioned expression for external force per unit mass ac
on then particles in a gas suspension is given by Buyev
and Kapbasov@28#.

The second term on the right-hand side of Eq.~7! repre-
sents the radial component of dimensionless pressure g



a

e
a
r
-

p-
co
x
by
t
E
i

t
o-
im
d
icl
ha

o
io
t

ob-
re
ni-
in
h
ef-
ar-
le-
es
the
ion
of

par-
is

re
ass
e
x-

le
e

m-
of
of

-
ri-
lid

56 2977LATERAL DIFFUSIVE MIGRATION OF MASSIVE . . .
ent of the particle assembly of kindn, which depends on the
chemical potential approximated as@29#

mn5T ln nn2 2
3 pT

]

]nn

3S (
p51

s

(
q51

s

npnqspq
3 ÈV 1

V82 gpq
c dV8D . ~8!

The first term on the right-hand side of Eq.~8! represents the
chemical potential of the particle assembly of typen when
approaching ideal-gas behavior and the remaining terms
the residual chemical potential. Equation~8! is a good ap-
proximation if the particle assembly of typen in a gas-
particle flow is treated as made up of hard spheres. Henc
approximate expression for the chemical potential of the p
ticle assembly of typen can be obtained by substituting fo
gpq

c from Eq. ~5! in Eq. ~8!, although the expression is com
plicated.

It can easily be verified from Eq.~7! that in the limit
tn j

(2)/tn
(1)!1, the first term on the right-hand side, which re

resents the source of momentum due to particle-particle
lisions, is dominant. Thus, in this instance the explicit e
pression for particle ordinary diffusion, which is caused
the relative motion of the components of the mixture due
the presence of a density gradient, can be obtained from
~7! assuming that the motion of the assembly of particles
a moderately dense gas-particle flow resembles tha
simple fluid molecules for which the heat flux vector is pr
portional to the gradient of temperature. In an opposite l
iting case whentn j

(2)/tn
(1)@1, the last term on the right-han

side, which describes the viscous forces exerted on part
by the relative gas motion, plays an important role. In w
follows, this limiting case will not be discussed.

Assuming that the wall of the pipe serves as a sink
pseudothermal energy, a pseudothermal particle diffus
which is caused by the relative motion of the particles due
re

an
r-

l-
-

o
q.
n
of

-

es
t

f
n,
o

the presence of a granular temperature gradient, can be
served from regions of high to low granular temperatu
across the pipe. As a result of this diffusive motion, nonu
form spatial distributions of particle concentration develop
the radial direction, which produce ordinary diffusion, whic
tends to eliminate these nonuniformities. The separating
fect brought about by thermal diffusion may also cause p
tial separation of particle components in multisized partic
gas flows in vertical risers in which the larger particl
usually in the lower granular temperature region and
smaller particles in the higher granular temperature reg
@30#. This discussion may shed light on the physical origin
the lateral particle mixing observed@5# in gas-particle flows
in vertical risers.

The case where the heat flux vector depends on the
ticle number density gradients, which means that there
interference of diffusion and heat flow, is somewhat mo
complicated. The phenomenological expression for the m
flux of the n particles in the radial direction relative to th
local center of mass velocity, under the condition of no e
ternal force and mechanical equilibrium, is

rnvnr52(
j 51

s

~12dn j!Dn jmjF]nj

]xr
1njkTj

] lnT

]xr
G , ~9!

whereDn j is the mutual diffusion coefficient andkTj
repre-

sents thermal diffusion ratio of thej particles (j 51,2,...,s).
In order to derive a constitutive equation for the partic
diffusion velocity in the radial direction the balance of th
mean of the third moment of velocity of the particle asse
bly of typen is needed, which is coupled with the balance
momentum through the first term on the right-hand side
Eq. ~7!. In the limit tn j

(2)/tn
(1)!1, the leading-order dimen

sionless balance of the third moment of velocity in the ho
zontal plane for a fully developed axisymmetric gas-so
flow of multisized particles may be given as@16#
(
j 51

s
11en j

5ptn j
~2! $2 20

3 ~12en j!~2pM jnT* 3!1/2~M jnv j r* 1Mn jvnr* !2~2pM jnT* 3!1/2~vnr* 2v j r* !@82 4
3 Mn j18~12en j!M jn

2 16
3 ~12en j

2 !M jn#1~2pM jnT* !1/2@ 2
3 M jnMn j~ajr* 2anr* !14~M jn

2 ajr* 2Mn j
2 anr* !1 12

5 M jn
2 ~ajr* 2anr* !

2 82
15 ~12en j!Mn j~M jnajr* 1Mn janr* !2 16

15 ~11en j!M jn~M jnajr* 1Mn janr* !1 4
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2 ~ajr* 2anr* !#%

5hnT* K dnr* 1T* H (
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s Fdn j16S sn j
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D 3
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c f jM jnMn j@
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5 2 2

5 ~12en j!2 4
5 ~12en j

2 !#G ] lnT*
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s
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5
M jnen j~en j21!F nn

rnT S ]mn
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2dn jG ]r j

]xr* J L , ~10!

where

dnr* 5T* H rn

r (
j 51

s Fdn j1
2p

3
Mn j~11en j!S sn j
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D 3

njs j
3gc

n jG ] lnT*
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s
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is the dimensionless diffusion force in the radial directi
under the condition of no external forces and mechan
equilibrium.

Of special interest is the case of a bidisperse particle-
suspension turbulent flow consisting of normal and tag
particles, with the same massm, diameters, coefficient of
restitutione, and different number densitiesnn andnt , in a
vertical riser. An approximate expression for the diffusi
velocity of the normal particles in the radial direction, in th
limit tn j

(2)/tn
(1)!1, from Eqs.~7! and ~10! can be obtained

correct to first order, as

vnr52
p1/2s

8rnr~11e!fgc
S T

mD 1/2K r trn

n

n

T

]mn

]nn
2

n

T

]m t

]nn

r t

T

]m t

]nn
1

rn

T

]mn

]nn

3F11
p

3
ns3~11e!gcG ] lnT

]xr
1

]rn

]xrL . ~11!

The first term in the angular brackets on the right-hand s
accounts for the diffusion due to the radially nonunifor
granular temperature distribution. This effect results in
migration of particles from the high-granular-temperature
gions toward regions of lower granular temperature. The s
ond term in the angular brackets describes the ordinary
ticle diffusive motion due to nonuniform spatial distribution
of particle concentration. It can be concluded from Eq.~11!
that the particle diffusivity

D5p1/2sS T

mD 1/2

/@8~11e!fgc#,

as well as the particle thermal diffusion coefficient

DT5S r tag

T

]mnor

]nnor
2

r tag

T

]m tag

]nnor
D Y S r tag

T

]m tag

]nnor
1

rnor

T

]mnor

]nnor
D

3F11
p

3
ns3~11e!gcGD,

increases with the square root of the granular temperatu
In order to evaluate the lateral particle diffusion veloc

relative to the local mass mean velocity of the solid from E
~11!, it is necessary to know the granular temperature of
normal particles. Using the modified form of the energy b
ance@16#, which accounts for the forces exerted on the p
ticles by the gas, for the normal particle assembly in
particle-gas suspension consisting of a binary mixture of n
mal and tagged particles, for whichnt!nn'n, one can set
up the balance of pseudothermal energy in the form
al

as
d

e

e
-
c-
r-

.

.
e
-
-
a
r-

3

2

d

dt

T

m
5 K 1

r

T

m

]

]x
•~rvn!2

1

r

]

]x
•qn1

1

r
vn•S ]

]x
•PD L

2
1

r
gn1

1

r K 2Pn :
]u

]x
2fnrg@b1K1~fs!

1b2K2~fs!uUn
Ru#Un

R8CnL , ~12!

whereqn is the energy flux vector of the normal particles a
gn is the rate of energy dissipation per unit volume of m
ture due to inelastic collisions@16#. Note that, in evaluating
these quatities, terms ofO(nt /nn) or higher can be neglecte
with respect to those ofO(nn /n). Here, prime indicates the
functuating velocity.

The term on the left-hand side of Eq.~12! presents the
rate of change of the pseudothermal energy for an obse
moving with the mean solid mixture velocity. The terms
the first set of angular brackets on the right-hand side re
sent the transport of the particle pseudothermal energy
the second term is the rate of energy dissipation due to
elastic collisions. The terms in the second set of angu
brackets represent the rate of production of the pseudot
mal energy at which particle pressure performs work
mean flow and the contribution from particle-turbulence
teraction@11#, respectively. A numerical solution of Eq.~12!
has been presented for gas suspension flows of moder
dense solid spherical particles in vertical tubes elsewh
@31#.

III. RESULTS AND DISCUSSION

In the preceding section, the particle diffusivity was fou
to increase with the square root of the particle granular te
perature when the random component of the particle velo
is generated mainly by particle-particle collisions. In wh
follows, the proposed particle diffusivity is applied to predi
lateral diffusion in fully developed dilute and relativel
dense gas-particle flows in vertical pipes using the value
the local granular temperature predicted by Louge, Masto
kos and Jenkins@11#. Then the results using the prese
model are compared with the predictions of Govan, Hew
and Ngan@20# for dilute suspensions as the solids concent
tion tends toward zero. Table I represents the parame
used in computing the particle diffusion coefficient. He
T/Tcl represents the ratio of the particle granular tempera
to the collisionless particle fluctuating velocity at the sam

TABLE I. Parameters used in computing the particle diffusi
coefficient.

Particle size
~mm!

Solid volume
fraction ~%!

Granular
temperaturea (cm/s)2 T/Tcl

200 0.16 531 15
200 0.43 378 10
500 0.18 708 110
500 0.50 554 89

Solid density 1000 kg/m3

Pipe diameter 30.5 mm

aReference@11#.
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eddies’ characteristic sizel e . The results of the calculation
are shown in Fig. 1 as plots of the particle diffusion coe
cient versus the particle size. For the conditions mentione
Table I the hydrodynamic relaxation time is much larger th
the relevant turbulent time scale. In this case, particles
jectories are relatively straight in spite of the gas turbulen
In their model Louge, Mastorakos, and Jenkins@11# assumed
that the frequency of the particle displacements are c
trolled by particle-particle collisions, although the partic
collision time is not much smaller than the hydrodynam
relaxation time. The particle collision timetc , particle vis-
cous relaxation timetd , and the particle eddy interactio
time t i are defined as

tc5
1

pns2gcT
1/2, t i5

l e

DwT , td5
rn

ms

rgb2K2~fs!DwT .

~13!

The predicted particle diffusivity using Eq.~11! versus
the particle diameter for the parameters given in Table
illustrated in Fig. 1. It is worth pointing out that for the cas
mentioned in Table I, the contact value of the equilibriu
radial distribution functiongc approaches unity. Moreove
the Govan predictions for collisionless conditions are illu
trated by solid curve in Fig. 1. The predicted particle diff
sion based on the present theory shows the opposite t
compared to the collisionless particle diffusion coefficient
Govan, supporting the idea that inertia tends to increase
ticle diffusivity. However, this qualitative variation is in
slight disagreement with that indicated by Meek and Jo
@32#. In this connection, it is relevant to refer to the observ
tion by Halder and Basu@33# that the smaller glass bead
result in higher rates of mass transfer from a large naph
lene particle to the fast bed of fines. The predicted part
diffusivity is also found to decrease with the solid volum
fraction. For the lack of experimental data, one cannot cla
an accuracy of the above-estimated diffusion coefficient.

In order to estimate the particle diffusion velocity caus
by the radially nonuniform granular temperature, the turb
lent, fully developed flow of a moderately dense suspens

FIG. 1. Comparison of lateral particle diffusion coefficients p
dicted by Eq.~11! for the parameters given in Table I, with th
model of Govan@18#, which is shown by the solid curve. Symbo
and conditions are as follows:h, the long-time particle diffusion
coefficient for collisionless condition@18#; d, dilute suspension in
which the collisional contributions are dominant (f50.18%); and
j, relatively dense suspension (f50.5%).
-
in
n
a-
e.

n-

s

-

nd
f
r-

s
-

a-
le

-
n

in a vertical pipe that has been simulated by Pita a
Sundaresan@34# is considered. Particles with densityrs
51500 kg/m3 and diameters570mm are transported in ai
with densityrg51.2 kg/m3 and kinematic viscosityng515
31026 m2/s. The turbulent length scale of gas in the ful
developed pipe flow may be approximated byl e /R'0.2
@35#. HereR is the diameter of the pipe. For these conditio
the ratio of the particle relaxation time to the turbulent tim
scale of gast l is of order 1021, indicating that the particles
follow the fluid motion in the dilute suspensions as the so
concentration tends toward zero. In a moderately dense
pension such as that considered by Pita and Sundaresan@34#,
the ratio of the particle collision time to the particle edd
interaction is very small, suggesting that the frequency of
particle displacements are controlled by their rate of collis
with neighboring solid particles. Therefore, the analysis t
is presented in Sec. II can be used here to estimate the
ticle diffusion velocity, although it contains assumptions th
are strictly valid only for large particles. Pita and Sundares
presented three different possible solutions for the stea
state, fully developed flow when the values of the solid fl
and gas velocity are selected as 25 kg/m2s and 8 m/s, respec
tively. Here the solution that was presented in Fig. 4 of th
paper is considered. Figure 2 in this paper presents the ra
variation of the particle diffusive flux due to the temperatu
gradient. As a tentative attempt at the contact value of
equilibrium radial distribution functiongc , use is made of
thead hocmodel by Carnahan and Starling@36#, which is in
almost exact agreement with the numerical molecu
dynamics calculations for values of solid volume fraction
to about 0.5. The expression for the chemical potential c
sistent with Carnahan and Starling’s approximation can
obtained from Eq.~8!.

As can be seen from Fig. 2, the diffusion velocity i
creases slowly with radial distance untilR50.43 m. At this
point, the velocity begins to decrease sharply due to
sharp decrease in the granular temperature and approa
zero at the wall. These results represent the effect of radi
nonuniform granular temperature distributions, namely, t
particles migrate from the high-granular-temperature regi
toward regions of lower granular temperature, say, the w

-
FIG. 2. Predicted lateral particle diffusion velocity due to t

granular temperature gradient versus radial distance using the r
variation of particle volume fraction and the granular temperat
for the fully developed gas solid flow in the vertical tube given
Pita and Sundaresan@34#.



x-
y

n
, i
a
te
ud
ob
le

ike

he
ed
a
he

e-
d.
ux;
u-
is-
he
er

o-
the
u-

b-
He
os-

2980 56ZAMANKHAN, VAHEDI TAFRESHI, AND CHEN
region. The magnitude of the radial diffusion velocity e
ceeds 0.8 m/s atR50.43 m,which indicates that some ke
physics must be missing in their model.

Although the effect of the lateral particle diffusive flux i
gas-solid suspensions, in which solid clusters are present
question of fundamental interest, Dasgupta, Jackson,
Sundaresan@12# have demonstrated that it can be neglec
without any significance consequences. The present st
however, provides a context in which to investigate the pr
lem of mass transfer in a mixtures of polydisperse partic
entrained by the gas under conditions in which fractal-l
solid structures are present@37#.

IV. CONCLUSION

A kinetic-type theoretical approach is developed for t
transport processes involved in turbulent, fully develop
confined vertical flow of a moderately dense mixture of g
and particles with a narrow particle size distribution, in t
E
.

f
e,

uid

ch
s a
nd
d
y,
-
s

,
s

limit tc /td!1. Heretc is the particle mean free time andtd
is the particle hydrodynamic relaxation time. Analytical r
lations for flow-induced particle diffusivity are develope
There are two mechanisms for particle diffusion mass fl
the particle ordinary diffusion and the particle thermal diff
sion due to the radially nonuniform granular-temperature d
tributions. The latter effect tends to move particles from t
high-granular-temperature regions toward regions of low
granular temperature at the wall. The particle diffusivity c
efficients are found to increase with the square root of
particle granular temperature when the collisional contrib
tions are dominant.
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